We develop a new primitive for stochastic optimization: a low-bias, low-cost estimator of the minimizer $x_\star$ of any Lipschitz strongly-convex function. In particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn to turn any optimal stochastic gradient method into an estimator of $x_\star$ with bias $\delta$, variance $O(\log(1/\delta))$, and an expected sampling cost of $O(\log(1/\delta))$ stochastic gradient evaluations. As an immediate consequence, we obtain cheap and nearly unbiased gradient estimators for the Moreau-Yoshida envelope of any Lipschitz convex function, allowing us to perform dimension-free randomized smoothing. We demonstrate the potential of our estimator through four applications. First, we develop a method for minimizing the maximum of $N$ functions, improving on recent results and matching a lower bound up to logarithmic factors. Second and third, we recover state-of-the-art rates for projection-efficient and gradient-efficient optimization using simple algorithms with a transparent analysis. Finally, we show that an improved version of our estimator would yield a nearly linear-time, optimal-utility, differentially-private non-smooth stochastic optimization method.
翻译:我们开发了一个用于随机优化的新型原始方法:一个低比值,低成本估算任何利普西茨强电解剖功能的最小化美元(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx(1/delta))值;特别是,我们利用Blanchchet和Glynn,利用Blanchchchet和Glynn,将任何利普西茨 convex功能的Moreau-Yoshida封获得廉价和近乎公正的梯度梯度梯度估计器,从而将任何最佳的透度方法转化为一个偏差($xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)的估算器。我们通过四个应用程序展示了我们的估算器的潜力。首先,我们开发了一种最大限度减少内部差差量功能功能,改进了最近的结果和与逻辑因素相匹配。第二和第三,我们恢复了最优化的州-最优化的、最优化的精确的快速分析, 展示了我们最高效的平压方法,展示了我们最后展示了一种简单、最高效的平压的平压的平压的平流方法。