We attempt to generalize a theorem of Nash-Williams stating that a graph has a $k$-arc-connected orientation if and only if it is $2k$-edge-connected. In a strongly connected digraph we call an arc {\it deletable} if its deletion leaves a strongly connected digraph. Given a $3$-edge-connected graph $G$, we define its Frank number $f(G)$ to be the minimum number $k$ such that there exist $k$ orientations of $G$ with the property that every edge becomes a deletable arc in at least one of these orientations. We are interested in finding a good upper bound for the Frank number. We prove that $f(G)\leq 7$ for every $3$-edge-connected graph. On the other hand, we show that a Frank number of $3$ is attained by the Petersen graph. Further, we prove better upper bounds for more restricted classes of graphs and establish a connection to the Berge-Fulkerson conjecture. We also show that deciding whether all edges of a given subset can become deletable in one orientation is NP-complete.
翻译:我们试图将纳什-威廉斯的理论集成为纳什-威廉斯(Nash-Williams)的一个理论,指出一个图表有一个以美元为单位的弧相联方向,如果而且只有以美元为单位,它才具有以美元为单位的弧相联方向。在一条联系强烈的教条中,如果删除它留下一条联系强烈的教条,我们就称之为弧 {it deletable}。如果删除它留下一条联系强烈的教条,我们用3美元为单位的直线将它的Frank $f(G) 定为最低数 $f(G) 美元。此外,我们证明,在更受限制的图表类别中,G美元为美元为单位的方圆方向,并且至少在这些方向之一中,每个边缘都成为可解开的弧值。我们还想找到一个良好的法兰克数字的上界。我们证明,每张3美元的法兰克数是3美元。另一方面,我们表明,彼得森的图表达到了一个弗兰克斯-富克森图表的法度。此外,我们证明,更接近点的上界限的界限是更好的界限,与贝尔克-富克森的连接。我们还表明,确定某个子的所有边缘是否都可解方向。