We provide upper bounds on the $L(p,q)$-labeling number of graphs which have interval (or circular-arc) representations via simple greedy algorithms. We prove that there exists an $L(p,q)$-labeling with span at most $\max\{2(p+q-1)\Delta-4q+2, (2p-1)\mu+(2q-1)\Delta-2q+1\}$ for interval $k$-graphs, $\max\{p,q\}\Delta$ for interval graphs, $3\max\{p,q\}\Delta+p$ for circular-arc graphs, $2(p+q-1)\Delta-2q+1$ for permutation graphs and $(2p-1)\Delta+(2q-1)(\mu-1)$ for cointerval graphs. In particular, these improve existing bounds on $L(p,q)$-labeling of interval graphs and $L(2,1)$-labeling of permutation graphs. Furthermore, we provide upper bounds on the coloring of the squares of aforementioned classes.
翻译:我们提供美元( p, q+q-1)\ Delta-4q+2, 2p-1\ Delta-4q+2, 2p-1\ mu+( 2q-1)\ Delta-2q+1 ⁇ $( 美元) 的上限值, 中间值为 $k$- graphs, $\ masx ⁇ p, q ⁇ çelta$ 的间隔图、 圆弧图3\ max ⁇ p, q ⁇ Delta+p$, 圆弧图2 (p+q-1)\ Delta-2q+1$, 中间值图形$(2p-1)\ Delta+2( 2q-1)\\ mu-1) 。 特别是, 这些改进了间隔图 $L( p, q) 和 $L( 2, 1美元) 的间隔图的现有边框值 。 此外, 我们提供了上述图表的颜色等级的上框值 。