This paper introduces the Two-Class ($r$,$k$)-Coloring problem: Given a fixed number of $k$ colors, such that only $r$ of these $k$ colors allow conflicts, what is the minimal number of conflicts incurred by an optimal coloring of the graph? We establish that the family of Two-Class ($r$,$k$)-Coloring problems is NP-complete for any $k \geq 2$ when $(r, k) \neq (0,2)$. Furthermore, we show that Two-Class ($r$,$k$)-Coloring for $k \geq 2$ colors with one ($r = 1$) relaxed color cannot be approximated to any constant factor ($\notin$ APX). Finally, we show that Two-Class ($r$,$k$)-Coloring with $k \geq r \geq 2$ colors is APX-complete.
翻译:本文介绍两层($,k美元)的彩色问题:鉴于固定的彩色数为1美元,因此这些花色中只有1美元允许冲突,那么,最佳彩色的图象所引发的冲突最小数量是多少?我们确定,两层(r美元,k美元)的彩色问题对于任何2美元($,k美元)的彩色来说,对于任何2美元($,k美元)来说,NP是完整的。此外,我们表明,以1美元(r美元,k美元)的彩色计价2美元(Geq 2美元)的彩色以1美元(r=1美元)的彩色计价两层(Geq 2美元)的彩色不能与任何不变因素相近($,noin美元 APX)。最后,我们表明,用2美元(g美元)的彩色计值为2美元(ge克)的彩色是APX完全的。