In practice symmetries of combinatorial structures are computed by transforming the structure into an annotated graph whose automorphisms correspond exactly to the desired symmetries. An automorphism solver is then employed to compute the automorphism group of the constructed graph. Such solvers have been developed for over 50 years, and highly efficient sequential, single core tools are available. However no competitive parallel tools are available for the task. We introduce a new parallel randomized algorithm that is based on a modification of the individualization-refinement paradigm used by sequential solvers. The use of randomization crucially enables parallelization. We report extensive benchmark results that show that our solver is competitive to state-of-the-art solvers on a single thread, while scaling remarkably well with the use of more threads. This results in order-of-magnitude improvements on many graph classes over state-of-the-art solvers. In fact, our tool is the first parallel graph automorphism tool that outperforms current sequential tools.


翻译:在实际操作中,组合结构的对称性是通过将结构转换成一个附加说明的图表来计算的,其自动形态与理想的对称完全对应。 然后,将使用一个自动形态解析器来计算构建的图形的自成一体组。 这些解析器已经开发了50多年,并且具有高度高效的顺序、单一核心工具。 然而,没有竞争的平行工具可用于这项任务。 我们引入了一个新的平行随机化算法, 其依据是修改顺序解析器使用的个性化- 精度模式。 使用随机化非常关键地使得平行化。 我们报告广泛的基准结果, 显示我们的解析器在单线上对最先进的解析器具有竞争力, 而与更多线索的使用相比, 缩放得非常出色。 这的结果是, 许多图形级的测算法改进了州级的解析器。 事实上, 我们的工具是第一个平行的图形自成形工具, 超越了当前顺序工具。

0
下载
关闭预览

相关内容

PARCO:Parallel Computing。 Explanation:并行计算。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/conf/parco/
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
4+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月5日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
4+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员