Restricted star colouring is a variant of star colouring introduced to design heuristic algorithms to estimate sparse Hessian matrices. For $k\in\mathbb{N}$, a $k$-restricted star colouring ($k$-rs colouring) of a graph $G$ is a function $f:V(G)\to{0,1,\dots,k-1}$ such that (i)$f(x)\neq f(y)$ for every edge $xy$ of G, and (ii) there is no bicoloured 3-vertex path ($P_3$) in $G$ with the higher colour on its middle vertex. We show that for $k\geq 3$, it is NP-complete to test whether a given planar bipartite graph of maximum degree $k$ and arbitrarily large girth admits a $k$-rs colouring, and thereby answer a problem posed by Shalu and Sandhya (Graphs and Combinatorics, 2016). In addition, it is NP-complete to test whether a 3-star colourable graph admits a 3-rs colouring. We also prove that for all $\epsilon > 0$, the optimization problem of restricted star colouring a 2-degenerate bipartite graph with the minimum number of colours is NP-hard to approximate within $n^{(1/3)-\epsilon}$. On the positive side, we design (i) a linear-time algorithm to test 3-rs colourability of trees, and (ii) an $O(n^3)$-time algorithm to test 3-rs colourability of chordal graphs.
翻译:受限制的星色是用于设计超值算法以估计稀薄的黑森基质的恒星颜色的一种变体。 对于 $k\ in\ mathb{N} 美元, 一个图形$G$ 的 美元限制星色(k$- rs 彩色) 是一个函数 $f: V( G)\ t@ 0. 0, 1,\ dots, k-1}, 这样 (i) f( x)\neq f(y) 美元, 用于每个边缘 G$xy 美元, 以及 (ii) 没有双色3- 平面路径路径路径(P_ 3) 美元, 其中间的颜色值更高。 我们显示, $3 的恒星双面图图中是否包含 3 美元 的正值 。