In zero-shot cross-lingual transfer, a supervised NLP task trained on a corpus in one language is directly applicable to another language without any additional training. A source of cross-lingual transfer can be as straightforward as lexical overlap between languages (e.g., use of the same scripts, shared subwords) that naturally forces text embeddings to occupy a similar representation space. Recently introduced cross-lingual language model (XLM) pretraining brings out neural parameter sharing in Transformer-style networks as the most important factor for the transfer. In this paper, we aim to validate the hypothetically strong cross-lingual transfer properties induced by XLM pretraining. Particularly, we take XLM-RoBERTa (XLMR) in our experiments that extend semantic textual similarity (STS), SQuAD and KorQuAD for machine reading comprehension, sentiment analysis, and alignment of sentence embeddings under various cross-lingual settings. Our results indicate that the presence of cross-lingual transfer is most pronounced in STS, sentiment analysis the next, and MRC the last. That is, the complexity of a downstream task softens the degree of crosslingual transfer. All of our results are empirically observed and measured, and we make our code and data publicly available.
翻译:在零点跨语言传输中,在一种语言的文体上受过培训的受监督的NLP任务直接适用于另一种语言,无需任何额外培训。跨语言传输的来源可以直接如语言之间的词汇重叠(例如,使用相同的脚本、共享子字)那样直接,自然迫使文本嵌入一个相似的表达空间。最近引入的跨语言语言语言模式(XLM)预培训将神经参数共享作为变异器式网络中最重要的传输要素。在本文中,我们的目标是验证XLM预培训引发的假设强大的跨语言传输属性。特别是,我们在扩大语义相似性(STS)、SQuAD和KorQuAD的实验中采用XLM-ROBERTA(XLMR),用于机器阅读、情绪分析以及将句嵌入不同语言环境中的语系统一。我们的成果显示,跨语言传输在STS、情绪分析中最为明显,而MRC是最后一个。我们所观测到的下游和跨语言数据传输的复杂程度。我们所观测到的下游和跨层次的数据传输。