Facing economic challenges due to the diverse objectives of businesses, and consumers, commercial greenhouses strive to minimize energy costs while addressing CO2 emissions. This scenario is intensified by rising energy costs and the global imperative to curtail CO2 emissions. To address these dynamic economic challenges, this paper proposes an architectural design for an energy economic dispatch testbed for commercial greenhouses. Utilizing the Attribute-Driven De-sign method, core architectural components of a software-in-the-loop testbed are proposed which emphasizes modularity and careful consideration of the multi-objective optimization problem. This approach extends prior research by implementing a modular multi-objective optimization framework in Java. The results demonstrate the successful integration of the CO2 reduction objective within the modular architecture with minimal effort. The multi-objective optimization output can also be employed to examine cost and CO2 objectives, ultimately serving as a valuable decision-support tool. The novel testbed architecture and a modular approach can tackle the multi-objective optimization problem and enable commercial greenhouses to navigate the intricate landscape of energy cost and CO2 emissions management.
翻译:暂无翻译