Glyph-based visualization achieves an impressive graphic design when associated with comprehensive visual metaphors, which help audiences effectively grasp the conveyed information through revealing data semantics. However, creating such metaphoric glyph-based visualization (MGV) is not an easy task, as it requires not only a deep understanding of data but also professional design skills. This paper proposes MetaGlyph, an automatic system for generating MGVs from a spreadsheet. To develop MetaGlyph, we first conduct a qualitative analysis to understand the design of current MGVs from the perspectives of metaphor embodiment and glyph design. Based on the results, we introduce a novel framework for generating MGVs by metaphoric image selection and an MGV construction. Specifically, MetaGlyph automatically selects metaphors with corresponding images from online resources based on the input data semantics. We then integrate a Monte Carlo tree search algorithm that explores the design of an MGV by associating visual elements with data dimensions given the data importance, semantic relevance, and glyph non-overlap. The system also provides editing feedback that allows users to customize the MGVs according to their design preferences. We demonstrate the use of MetaGlyph through a set of examples, one usage scenario, and validate its effectiveness through a series of expert interviews.
翻译:以 Glyph 为基础的视觉化在与全面的视觉隐喻相联系时能够实现令人印象深刻的图形设计,这种隐喻有助于观众通过披露数据语义来有效地掌握传递的信息。然而,创建这种隐喻性淋巴基直观化(MGV)并不是一件容易的任务,因为它不仅需要深入了解数据,而且还需要专业设计技能。本文提议了MetaGlyph,这是一个从电子表格中生成MGV的自动系统。为了开发MetGlyph,我们首先进行定性分析,从隐喻化和格字设计的角度来理解当前MGV的设计。根据结果,我们引入了一个通过隐喻图像选择和MGV构建生成MGV的新框架。具体地说,MetaGlyph 自动从基于输入数据语义的在线资源中选择带有相应图像的隐喻。然后我们将蒙特卡洛树搜索算法整合起来,通过将视觉元素与数据维度、语义相关性和格字体非翻来探索当前的数据维度。根据结果,我们还提供编辑反馈,使用户能够通过使用MG-V 的模型进行定制设计。