Stereo matching is a critical task for robot navigation and autonomous vehicles, providing the depth estimation of surroundings. Among all stereo matching algorithms, Efficient Large-scale Stereo (ELAS) offers one of the best tradeoffs between efficiency and accuracy. However, due to the inherent iterative process and unpredictable memory access pattern, ELAS can only run at 1.5-3 fps on high-end CPUs and difficult to achieve real-time performance on low-power platforms. In this paper, we propose an energy-efficient architecture for real-time ELAS-based stereo matching on FPGA platform. Moreover, the original computational-intensive and irregular triangulation module is reformed in a regular manner with points interpolation, which is much more hardware-friendly. Optimizations, including memory management, parallelism, and pipelining, are further utilized to reduce memory footprint and improve throughput. Compared with Intel i7 CPU and the state-of-the-art CPU+FPGA implementation, our FPGA realization achieves up to 38.4x and 3.32x frame rate improvement, and up to 27.1x and 1.13x energy efficiency improvement, respectively.


翻译:对机器人导航和自主车辆来说,制式匹配是一项关键任务,可以提供对周围环境的深度估计。在所有立体匹配算法中,高效大型立体系统(ELAS)提供了效率与准确性的最佳权衡,然而,由于固有的迭代过程和不可预测的内存存访问模式,拉美证系统只能运行在高端CPU上1.5-3英尺,在低功率平台上很难实现实时性能。在本文中,我们提议为实时ECUS在FPGA平台上的立体匹配建立一个节能结构。此外,对原计算密集度和不规则的三角组合模块进行了定期改革,并配有更方便硬件的点间插。优化,包括记忆管理、平行和管道,被进一步用于减少记忆足迹并改进吞吐量。与Intel i7CPU和州级CPU+FPGA相比,我们的FGA实现达到38.4x和3.32x框架速率改进,以及分别达到27.1x和1.13x能效。

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Deeplearning4j 快速入门
人工智能头条
14+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Deeplearning4j 快速入门
人工智能头条
14+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员