Adapters are a parameter-efficient alternative to fine-tuning, which augment a frozen base network to learn new tasks. Yet, the inference of the adapted model is often slower than the corresponding fine-tuned model. To improve on this, we propose Structured Pruning Adapters (SPAs), a family of compressing, task-switching network adapters, that accelerate and specialize networks using tiny parameter sets and structured pruning. Specifically, we propose a channel-based SPA and evaluate it with a suite of pruning methods on multiple computer vision benchmarks. Compared to regular structured pruning with fine-tuning, our channel-SPAs improve accuracy by 6.9% on average while using half the parameters at 90% pruned weights. Alternatively, they can learn adaptations with 17x fewer parameters at 70% pruning with 1.6% lower accuracy. Similarly, our block-SPA requires far fewer parameters than pruning with fine-tuning. Our experimental code and Python library of adapters are available at github.com/lukashedegaard/structured-pruning-adapters.
翻译:适应器是微调的一种具有参数效率的替代方法,它增加了一个冷冻的基础网络,以学习新的任务。然而,经过调整的模型的推论往往比相应的微调模型慢一些。为了改进这一点,我们提议结构化的普鲁宁适应器(SPAs),这是一个压缩、任务转换网络适配器的组合,它使用微小的参数组和结构化的裁剪机加速和专门化网络。具体地说,我们提议一个基于频道的SPA(SPA),并在多个计算机视觉基准上用一套修剪方法来评估它。与经过精调的正规结构裁剪裁相比,我们的频道-SPA(SPA)平均提高6.9%,同时使用90%的纯重参数的一半。或者,它们可以学习17x的更小参数,70%的纯度为70%,精度低1.6%。同样,我们的块适应器所需要的参数比微调的修剪裁机要少得多。我们的实验代码和适应器Python图书馆可以在 guthub.com/luchedegaard/rdestrat-prunning-rapptopticers。