We discuss deep learning inference for the neutron star equation of state (EoS) using the real observational data of the mass and the radius. We make a quantitative comparison between the conventional polynomial regression and the neural network approach for the EoS parametrization. For our deep learning method to incorporate uncertainties in observation, we augment the training data with noise fluctuations corresponding to observational uncertainties. Deduced EoSs can accommodate a weak first-order phase transition, and we make a histogram for likely first-order regions. We also find that our observational data augmentation has a byproduct to tame the overfitting behavior. To check the performance improved by the data augmentation, we set up a toy model as the simplest inference problem to recover a double-peaked function and monitor the validation loss. We conclude that the data augmentation could be a useful technique to evade the overfitting without tuning the neural network architecture such as inserting the dropout.
翻译:我们使用质量和半径的真实观测数据,讨论国家中子星方程式(Eos)的深度学习推论。我们用质量和半径的真实观测数据,对常规多边回归法和Eos-S对准的神经网络方法进行定量比较。为了在观测中引入不确定性,我们用与观测不确定性相对应的噪音波动来增加培训数据。降低的Eoss可以适应一个薄弱的第一阶段过渡,我们为可能的第一阶区域制作直方图。我们还发现,我们的观测数据扩增有一个副产品可以抑制过分适应的行为。为了检查数据扩增后改进的性能,我们设置了一个微量模型,作为最简单的推论问题,以恢复一个双极函数并监测验证损失。我们的结论是,数据增强可能是一种有用的技术,可以在不调整神经网络结构的情况下避免过度适应,例如插入废气。