While previously thought to be uniquely human, cumulative cultural evolution continues to be found in non-human animals. It occurs when an adaptive innovation from an individual is repeatedly passed onto consecutive generations through social learning. For example, pigeons who fly alone or in stable pairs show relatively rigid sub-optimal routes, but gradually improve route efficiency over generations of pairs in which experienced members are swapped for naive ones. This raises the question of what the minimally required cognitive architecture is for cumulative cultural evolution to emerge. Here, I aimed to answer this question in artificial agents who employ three main functions: goal-direction, social proximity, and route memory. At the optima for efficiency and generational efficiency improvement, agents replicated cumulative culture observed in pigeons. At each optimum, paths were determined primarily by memory, and to a lesser extent by social proximity and goal-direction. Because of their need for social proximity, each naive agent stayed close to their experienced counterpart as that followed its memorised path. However, unhindered by route memory, the naive agent's heading was more likely to err towards the goal. This subtly biased pairs' routes, and the resulting efficiency improvement is thus regression to the goal. The resulting incremental improvements over generations meet all core criteria in current frameworks of cumulative cultural evolution, suggesting that rudimentary cumulative optimisation is an evolutionary mechanism that emerges even in simple systems that prefer social proximity and have a memory capacity.


翻译:虽然以前认为人类是独一无二的,但累积的文化进化仍然存在于非人类动物中。当一个人的适应性创新通过社会学习反复传承给连续几代人时,就会出现这种情况。例如,单飞或以稳定的一对飞的鸽子展示了相对僵硬的亚最佳路线,但逐渐提高了几代人之间的路线效率,在几代人中经验丰富的成员被转换为天真的路线。这提出了一个问题,即对于累积的文化进化来说,最起码需要的认知结构是什么。在这里,我的目标是在使用三大功能的人工代理人中回答这个问题:目标方向、社会接近和路线记忆记忆。在提高效率和代际效率的opima中,代理人复制了鸽子所观察到的累积文化文化。在每一种最佳情况下,路径主要是由记忆决定的,而社会接近和目标方向的取向较轻。由于他们需要社会上的接近,每个天体的代理人都与他们经历的对应结构相近。然而,由于路径记忆的阻碍,天体剂的走向更可能偏离目标。这一次偏向目标的方向是:即目标方向和代间效率的改善。这一次偏差的对路,因此,因此,效率的推后进进进进式的进式的进进进化机制就意味着一个渐进式的进进进式的进进进进进进进进进进进式的进式的进进式的进式的进式的进进进进进进进进进进进进进式的进式的进式的进式的进进进进进进进进进制机制是所有进进进进进进进进进进进进进进进进进进进制。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月1日
Arxiv
31+阅读 · 2022年2月15日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员