Time of flight based Non-line-of-sight (NLOS) imaging approaches require precise calibration of illumination and detector positions on the visible scene to produce reasonable results. If this calibration error is sufficiently high, reconstruction can fail entirely without any indication to the user. In this work, we highlight the necessity of building autocalibration into NLOS reconstruction in order to handle mis-calibration. We propose a forward model of NLOS measurements that is differentiable with respect to both, the hidden scene albedo, and virtual illumination and detector positions. With only a mean squared error loss and no regularization, our model enables joint reconstruction and recovery of calibration parameters by minimizing the measurement residual using gradient descent. We demonstrate our method is able to produce robust reconstructions using simulated and real data where the calibration error applied causes other state of the art algorithms to fail.
翻译:非视距成像方法要求精确校准可见场景上的照明和探测器位置,以产生合理结果。如果这个校准错误足够高,重建完全可能失败,而用户对此毫不知情。在这项工作中,我们强调必须将自动校准建设到以飞行为基础的非视距成像方法的重建中,以便处理校准错误。我们提出了一个NLOS测量的前方模型,该模型在隐蔽场景反射和虚拟光照和探测器位置方面都是不同的。由于只有平均的平方误差损失,而且没有正规化,我们的模型能够通过使用梯度下降来尽量减少测量残留物来联合重建和恢复校准参数。我们证明我们的方法能够利用模拟和真实数据进行强有力的重建,因为校准错误导致艺术算法的其他状态失败。