This literature review will discuss the use of deep learning methods for image reconstruction using fMRI data. More specifically, the quality of image reconstruction will be determined by the choice in decoding and reconstruction architectures. I will show that these structures can struggle with adaptability to various input stimuli due to complicated objects in images. Also, the significance of feature representation will be evaluated. This paper will conclude the use of deep learning within visual decoding and reconstruction is highly optimal when using variations of deep neural networks and will provide details of potential future work.
翻译:文献审查将讨论利用FMRI数据在图像重建中使用深层次学习方法的问题,更具体地说,图像重建的质量将由解码和重建结构的选择决定。我将表明,由于图像中的物体复杂,这些结构能够适应各种输入刺激因素。此外,将评价地貌表现的意义。本文件将总结在视觉解码中使用深层学习的方法,在利用深层神经网络变异时,重建是高度最佳的,并将提供未来可能工作的细节。