Signature-based algorithms have become a standard approach for computing Gr\"obner bases in commutative polynomial rings. However, so far, it was not clear how to extend this concept to the setting of noncommutative polynomials in the free algebra. In this paper, we present a signature-based algorithm for computing Gr\"obner bases in precisely this setting. The algorithm is an adaptation of Buchberger's algorithm including signatures. We prove that our algorithm correctly enumerates a signature Gr\"obner basis as well as a Gr\"obner basis of the module generated by the leading terms of the generators' syzygies, and that it terminates whenever the ideal admits a finite signature Gr\"obner basis. Additionally, we adapt well-known signature-based criteria eliminating redundant reductions, such as the syzygy criterion, the F5 criterion and the singular criterion, to the case of noncommutative polynomials. We also generalize reconstruction methods from the commutative setting that allow to recover, from partial information about signatures, the coordinates of elements of a Gr\"obner basis in terms of the input polynomials, as well as a basis of the syzygy module of the generators. We have written a toy implementation of all the algorithms in the Mathematica package OperatorGB and we compare our signature-based algorithm to the classical Buchberger algorithm for noncommutative polynomials.
翻译:基于签名的算法已成为一种标准的方法,用于计算在通俗多元圆环中的 Gr\'obner 基础的 Gr\'obner 标准计算。 然而,目前还不清楚如何将这一概念扩展至在自由代数中设置非对称性多数值。 在本文中, 我们展示了一种基于签名的算法, 精确地计算 Gr\\'obner 基础。 该算法是对Buchberger 算法(包括签名)的调整。 我们证明我们的算法正确地罗列了一个签名 Gr\'obner 基础, 以及一个基于生成器主要术语生成的模块的 Gr\\'obner 基础的 Gr\'obner基础。 然而, 当理想的代数允许在自由代数中输入一个有限的签名 Gr\\\'obner 基础时, 这一概念就终止了。 此外, 我们的基于非对等式多边代算法的算法, 我们的计算法的计算法基础, 也就是我们从部分的货币性签名中, 恢复了我们用于用于计算结果的缩缩算算模型的矩阵的参数的参数的坐标。