Signature-based algorithms have become a standard approach for computing Gr\"obner bases in commutative polynomial rings. However, so far, it was not clear how to extend this concept to the setting of noncommutative polynomials in the free algebra. In this paper, we present a signature-based algorithm for computing Gr\"obner bases in precisely this setting. The algorithm is an adaptation of Buchberger's algorithm including signatures. We prove that our algorithm correctly enumerates a signature Gr\"obner basis as well as a Gr\"obner basis of the module generated by the leading terms of the generators' syzygies, and that it terminates whenever the ideal admits a finite signature Gr\"obner basis. Additionally, we adapt well-known signature-based criteria eliminating redundant reductions, such as the syzygy criterion, the F5 criterion and the singular criterion, to the case of noncommutative polynomials. We also generalize reconstruction methods from the commutative setting that allow to recover, from partial information about signatures, the coordinates of elements of a Gr\"obner basis in terms of the input polynomials, as well as a basis of the syzygy module of the generators. We have written a toy implementation of all the algorithms in the Mathematica package OperatorGB and we compare our signature-based algorithm to the classical Buchberger algorithm for noncommutative polynomials.


翻译:基于签名的算法已成为一种标准的方法,用于计算在通俗多元圆环中的 Gr\'obner 基础的 Gr\'obner 标准计算。 然而,目前还不清楚如何将这一概念扩展至在自由代数中设置非对称性多数值。 在本文中, 我们展示了一种基于签名的算法, 精确地计算 Gr\\'obner 基础。 该算法是对Buchberger 算法(包括签名)的调整。 我们证明我们的算法正确地罗列了一个签名 Gr\'obner 基础, 以及一个基于生成器主要术语生成的模块的 Gr\\'obner 基础的 Gr\'obner基础。 然而, 当理想的代数允许在自由代数中输入一个有限的签名 Gr\\\'obner 基础时, 这一概念就终止了。 此外, 我们的基于非对等式多边代算法的算法, 我们的计算法的计算法基础, 也就是我们从部分的货币性签名中, 恢复了我们用于用于计算结果的缩缩算算模型的矩阵的参数的参数的坐标。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2022年1月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员