In this work we formalize the (pure observational) task of predicting node attribute evolution in temporal graphs. We show that node representations of temporal graphs can be cast into two distinct frameworks: (a) The de-facto standard approach, which we denote {\em time-and-graph}, where equivariant graph (e.g., GNN) and sequence (e.g., RNN) representations are intertwined to represent the temporal evolution of the graph; and (b) an approach that we denote {\em time-then-graph}, where the sequences describing the node and edge dynamics are represented first (e.g., RNN), then fed as node and edge attributes into a (static) equivariant graph representation that comes after (e.g., GNN). In real-world datasets, we show that our {\em time-then-graph} framework achieves the same prediction performance as state-of-the-art {\em time-and-graph} methods. Interestingly, {\em time-then-graph} representations have an expressiveness advantage over {\em time-and-graph} representations when both use component GNNs that are not most-expressive (e.g., 1-Weisfeiler-Lehman GNNs). We introduce a task where this expressiveness advantage allows {\em time-then-graph} methods to succeed while state-of-the-art {\em time-and-graph} methods fail.
翻译:在这项工作中,我们正式确定了预测时间图中节点属性演变的(纯观测)任务。我们显示,时间图的节点表达方式可以分为两个不同的框架:(a) 将时间图的节点表达方式分为两个不同的框架:(a) 脱法标准方法,我们用它来表示时间和绘图 。 在真实世界的数据集中,我们显示我们的正时表达方式是相互关联的,以代表图的时间演变过程;(b) 一种我们用来表示时间和绘图 的方法,其中描述节点和边缘动态的顺序可以首先代表(例如,RNN),然后作为节点和边缘属性输入(例如,GNN) 等异点表达方式。在现实世界的数据集中,我们显示我们的正时和日框架可以像正时和日一样实现预测性业绩。 有趣的是时间- 时间- 时间- 时间-时间- 显示方式在( 时间- 时间- 时间- 和时间- 时间- 显示方式都允许GNNNE- ) 既采用一种特定的缩缩 方法。