I propose a new identification-robust test for the structural parameter in a heteroskedastic linear instrumental variables model. The proposed test statistic is similar in spirit to a jackknife version of the K-statistic and the resulting test has exact asymptotic size so long as an auxiliary parameter can be consistently estimated. This is possible under approximate sparsity even when the number of instruments is much larger than the sample size. As the number of instruments is allowed, but not required, to be large, the limiting behavior of the test statistic is difficult to examine via existing central limit theorems. Instead, I derive the asymptotic chi-squared distribution of the test statistic using a direct Gaussian approximation technique. To improve power against certain alternatives, I propose a simple combination with the sup-score statistic of Belloni et al. (2012) based on a thresholding rule. I demonstrate favorable size control and power properties in a simulation study and apply the new methods to revisit the effect of social spillovers in movie consumption.
翻译:暂无翻译