Collecting and labeling training data is one important step for learning-based methods because the process is time-consuming and biased. For face analysis tasks, although some generative models can be used to generate face data, they can only achieve a subset of generation diversity, reconstruction accuracy, 3D consistency, high-fidelity visual quality, and easy editability. One recent related work is the graphics-based generative method, but it can only render low realism head with high computation cost. In this paper, we propose MetaHead, a unified and full-featured controllable digital head engine, which consists of a controllable head radiance field(MetaHead-F) to super-realistically generate or reconstruct view-consistent 3D controllable digital heads and a generic top-down image generation framework LabelHead to generate digital heads consistent with the given customizable feature labels. Experiments validate that our controllable digital head engine achieves the state-of-the-art generation visual quality and reconstruction accuracy. Moreover, the generated labeled data can assist real training data and significantly surpass the labeled data generated by graphics-based methods in terms of training effect.
翻译:收集并标记训练数据是基于学习的方法中的一个重要步骤,因为这个过程既费时又有偏差。对于面部分析任务而言,尽管某些生成模型可用于生成人脸数据,但它们只能实现生成多样性、重建精度、3D 一致性、高保真视觉质量和易编辑性的子集。最近的一项相关工作是基于图形的生成方法,但它只能渲染高计算成本的低逼真度头像。在本文中,我们提出 MetaHead,一个统一且全功能的可控数字头部引擎,它包括可控的头部辐射场(MetaHead-F),可超现实地生成或重建视觉一致的 3D 可控数字头部,以及通用的自上而下的图像生成框架 LabelHead,以生成与给定可自定义特征标签一致的数字头像。实验证实,我们的可控数字头部引擎实现了最先进的生成视觉质量和重建精度。此外,生成的标记数据可以协助真实训练数据,并且在训练效果方面显着超过了图形方法生成的标记数据。