项目名称: 自适应快速模拟细节丰富的流体技术研究

项目编号: No.61502109

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 计算机科学学科

项目作者: 朱鉴

作者单位: 广东工业大学

项目金额: 21万元

中文摘要: 基于物理的流体动画技术在数字娱乐、虚拟现实等领域有着广泛的应用前景,具有重要研究价值。对复杂流体场景进行实时的真实感模拟与绘制, 仍然存在着不少有挑战性的问题。本项目的研究目标主要围绕三个方面展开:提出新的模拟架构,克服当前方法的不足;优化算法性能和采用硬件加速,提升模拟速度;合成流体细节,增强场景真实感。具体的研究内容包括:研究提出一种混合的模拟架构,有效结合欧拉网格方法和无网格SPH方法,发挥两种方法各自的优势;研究利用自适应技术来高效优化混合模型的性能,以低的计算代价获取高的计算速度;研究提出一种湍流模型叠加到混合模型中,合成丰富的流体细节,增强流体真实感;研究采用硬件加速技术将整个算法移植到GPU上执行,大幅提升计算速度。本项目将综合利用这些技术以快速模拟规模较大的具有丰富细节的复杂流体动态场景。

中文关键词: 混合模型;自适应;湍流;涡粒子;图形处理器

英文摘要: Physically based fluid simulation has a broad application prospect in digital entertainment and virtual reality, thus are of important research significance. However, still there are many challenging problems in realistic modeling of complex fluid scenes, especially for real-time applications. The research objectives of this project mainly revolves around three aspects: Put forward a new simulation architecture to overcome the shortage of the current models; Optimize the proposed architecture and use hardware acceleration for speed up; Synthesize fluid details to enhance scene realism. The specific research plans include: To propose a hybrid simulation architecture, which as an effective combination of euler grid method and meshless SPH method can play the advantages of both; Research using adaptive technology to efficiently optimize the hybrid architecture, with low computation cost to achieve high computation speed; To propose a turbulence model that can be superimposed onto the hybrid model, to increase fluid details; Studying on porting the whole algorithm onto GPU to greatly increase speed. These technologies will be combined to quickly simulate large-scale complex fluid dynamic scenes with rich details.

英文关键词: Hybrid Architecture;Adaptive;Turbulence;Vortex Particle;GPU

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】注意力机制的快速蒙特卡罗近似
专知会员服务
19+阅读 · 2022年2月5日
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
人脸合成技术综述
专知会员服务
24+阅读 · 2021年11月21日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
14+阅读 · 2021年3月26日
 图像内容自动描述技术综述
专知会员服务
85+阅读 · 2019年11月17日
对比,还原真实的GPU池化
CSDN
1+阅读 · 2022年4月13日
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
【CVPR2021】GAN人脸预训练模型
专知
1+阅读 · 2021年4月10日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
立体匹配技术简介
计算机视觉life
27+阅读 · 2019年4月22日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关VIP内容
【AAAI2022】注意力机制的快速蒙特卡罗近似
专知会员服务
19+阅读 · 2022年2月5日
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
人脸合成技术综述
专知会员服务
24+阅读 · 2021年11月21日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
14+阅读 · 2021年3月26日
 图像内容自动描述技术综述
专知会员服务
85+阅读 · 2019年11月17日
相关资讯
对比,还原真实的GPU池化
CSDN
1+阅读 · 2022年4月13日
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
【CVPR2021】GAN人脸预训练模型
专知
1+阅读 · 2021年4月10日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
立体匹配技术简介
计算机视觉life
27+阅读 · 2019年4月22日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员