We consider fully discrete finite element approximations for a semilinear optimal control system of partial differential equations in two cases: for distributed and Robin boundary control. The ecological predator-prey optimal control model is approximated by conforming finite element methods mimicking the spatial part, while a discontinuous Galerkin method is used for the time discretization. We investigate the sensitivity of the solution distance from the target function, in cases with smooth and rough initial data. We employ low, and higher-order polynomials in time and space whenever proper regularity is present. The approximation schemes considered are with and without control constraints, driving efficiently the system to desired states realized using non-linear gradient methods.
翻译:暂无翻译