Networks and temporal point processes serve as fundamental building blocks for modeling complex dynamic relational data in various domains. We propose the latent space Hawkes (LSH) model, a novel generative model for continuous-time networks of relational events, using a latent space representation for nodes. We model relational events between nodes using mutually exciting Hawkes processes with baseline intensities dependent upon the distances between the nodes in the latent space and sender and receiver specific effects. We propose an alternating minimization algorithm to jointly estimate the latent positions of the nodes and other model parameters. We demonstrate that our proposed LSH model can replicate many features observed in real temporal networks including reciprocity and transitivity, while also achieves superior prediction accuracy and provides more interpretability compared to existing models.
翻译:网络和时间点过程是在不同领域模拟复杂动态关系数据的基本构件。我们提出潜伏空间霍克斯(LSH)模型,这是一个用于节点潜在空间代表的连续时间关系事件网络的新基因模型。我们用相互振奋的霍克斯进程模拟节点之间的关系事件,基线强度取决于潜在空间节点与发件人和接收人特定效应之间的距离。我们建议采用交替最小化算法,共同估计节点和其他模型参数的潜在位置。我们证明,我们提议的LSH模型可以复制在实际时间网络中观察到的许多特征,包括互惠和中转性,同时实现较高的预测准确性,并提供比现有模型更多的解释性。