In recent years, great success has been witnessed in building problem-specific deep networks from unrolling iterative algorithms, for solving inverse problems and beyond. Unrolling is believed to incorporate the model-based prior with the learning capacity of deep learning. This paper revisits the role of unrolling as a design approach for deep networks: to what extent its resulting special architecture is superior, and can we find better? Using LISTA for sparse recovery as a representative example, we conduct the first thorough design space study for the unrolled models. Among all possible variations, we focus on extensively varying the connectivity patterns and neuron types, leading to a gigantic design space arising from LISTA. To efficiently explore this space and identify top performers, we leverage the emerging tool of neural architecture search (NAS). We carefully examine the searched top architectures in a number of settings, and are able to discover networks that are consistently better than LISTA. We further present more visualization and analysis to "open the black box", and find that the searched top architectures demonstrate highly consistent and potentially transferable patterns. We hope our study to spark more reflections and explorations on how to better mingle model-based optimization prior and data-driven learning.


翻译:近些年来,在从不滚动的迭代算法中建立针对特定问题的深层次网络以解决反向问题和其他问题方面,取得了巨大成功。 据认为, 在深层学习的学习能力下, 将基于模型的网络纳入到深层的深层次网络中。 本文回顾了作为深层网络设计方法的滚动工具的作用: 由此而形成的特别架构在多大程度上优异,我们能找到更好的发现? 使用ListA 进行稀疏恢复作为有代表性的例子, 我们为无滚动模型进行第一次彻底的空间设计研究。 在各种可能的变异中, 我们侧重于广泛的连接模式和神经型类型, 导致由 ListA 产生巨大的设计空间。 为了高效地探索这一空间, 并识别顶级表演者, 我们利用新兴的神经结构搜索工具(NAS) 。 我们仔细检查了在一系列环境下搜索的顶级结构, 并能够发现比 ListA 更好的网络。 我们进一步展示更多的视觉化和分析, 以“ 打开黑盒”, 并发现搜索的顶级结构显示了高度一致和潜在的可转移模式。 我们希望我们的研究能够激发更多的思考和探索如何更好地学习前模型。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员