When drawing causal inferences about the effects of multiple treatments on clustered survival outcomes using observational data, we need to address implications of the multilevel data structure, multiple treatments, censoring and unmeasured confounding for causal analyses. Few off-the-shelf causal inference tools are available to simultaneously tackle these issues. We develop a flexible random-intercept accelerated failure time model, in which we use Bayesian additive regression trees to capture arbitrarily complex relationships between censored survival times and pre-treatment covariates and use the random intercepts to capture cluster-specific main effects. We develop an efficient Markov chain Monte Carlo algorithm to draw posterior inferences about the population survival effects of multiple treatments and examine the variability in cluster-level effects. We further propose an interpretable sensitivity analysis approach to evaluate the sensitivity of drawn causal inferences about treatment effect to the potential magnitude of departure from the causal assumption of no unmeasured confounding. Expansive simulations empirically validate and demonstrate good practical operating characteristics of our proposed methods. Applying the proposed methods to a dataset on older high-risk localized prostate cancer patients drawn from the National Cancer Database, we evaluate the comparative effects of three treatment approaches on patient survival, and assess the ramifications of potential unmeasured confounding. The methods developed in this work are readily available in the $\textsf{R}$ package $\textsf{riAFTBART}$.
翻译:在利用观测数据就多种治疗对集群生存结果的影响进行因果关系推断时,我们需要处理多层次数据结构、多种治疗、审查和非计量的因果分析的影响。很少有现成的因果推论工具可以同时解决这些问题。我们开发了一个灵活的随机抽查加速故障时间模型,在这个模型中,我们利用贝叶西亚添加的增量回归树来捕捉受审查的生存时间和预处理 Covarys之间的任意复杂关系,并使用随机拦截来捕捉特定集群的主要效果。我们开发了一个高效的马尔科夫链蒙特卡洛算法,以绘制关于多种治疗对人口生存的影响的事后推论,并审查集群效应的变异性。我们进一步提出一个可解释的敏感性分析方法,以评价所得出的因果推论的敏感度,从而了解与不以非计量方式推断的因果假设之间的潜在差别。 大量模拟以经验方式验证并展示了我们拟议方法的良好实际操作特征。我们将拟议方法应用于用于对老年高比例的病人治疗的事后推断,我们从这种比较性癌症的抗量分析中评估了国家癌症的抗量分析结果。