Temporally dense single-person "small data" have become widely available thanks to mobile apps and wearable sensors. Many caregivers and self-trackers want to use these data to help a specific person change their behavior to achieve desired health outcomes. Ideally, this involves discerning possible causes from correlations using that person's own observational time series data. In this paper, we estimate within-individual average treatment effects of physical activity on sleep duration, and vice-versa. We introduce the model twin randomization (MoTR; "motor") method for analyzing an individual's intensive longitudinal data. Formally, MoTR is an application of the g-formula (i.e., standardization, back-door adjustment) under serial interference. It estimates stable recurring effects, as is done in n-of-1 trials and single case experimental designs. We compare our approach to standard methods (with possible confounding) to show how to use causal inference to make better personalized recommendations for health behavior change, and analyze 222 days of Fitbit sleep and steps data for one of the authors.
翻译:许多照顾者和自我跟踪者希望利用这些数据来帮助某个特定的人改变他们的行为,从而实现预期的健康结果。理想的是,这涉及通过使用该人自己的观察时间序列数据来辨别相关关系的可能原因。在本文中,我们估计了身体活动对睡眠时间和反之的个体间平均治疗影响。我们采用了模型双随机化(MoTR;“运动”)方法来分析一个人密集的纵向数据。形式上,MOTR是在连续干扰下应用 g-形式(即标准化、后门调整)的。它估计了稳定的重复效应,正如在n-o-i试验和单一案例实验设计中所做的那样。我们比较了我们的方法与标准方法(可能结合),以表明如何使用因果关系推论来提出更好的个性化健康行为变化建议,并为一位作者分析222天的Fitbit睡眠和步骤数据。