We present a novel variational derivation of the Maxwell-GLM system, which augments the original vacuum Maxwell equations via a generalized Lagrangian multiplier approach (GLM) by adding two supplementary acoustic subsystems and which was originally introduced by Munz et al. for purely numerical purposes in order to treat the divergence constraints of the magnetic and the electric field in the vacuum Maxwell equations within general-purpose and non-structure-preserving numerical schemes for hyperbolic PDE. Among the many mathematically interesting features of the model are: i) its symmetric hyperbolicity, ii) the extra conservation law for the total energy density and, most importantly, iii) the very peculiar combination of the basic differential operators, since both, curl-curl and div-grad combinations are mixed within this kind of system. A similar mixture of Maxwell-type and acoustic-type subsystems has recently been also forwarded by Buchman et al. in the context of a reformulation of the Einstein field equations of general relativity in terms of tetrads. This motivates our interest in this class of PDE, since the system is by itself very interesting from a mathematical point of view and can therefore serve as useful prototype system for the development of new structure-preserving numerical methods. Up to now, to the best of our knowledge, there exists neither a rigorous variational derivation of this class of hyperbolic PDE systems, nor do exactly energy-conserving and asymptotic-preserving schemes exist for them. The objectives of this paper are to derive the Maxwell-GLM system from an underlying variational principle, show its consistency with Hamiltonian mechanics and special relativity, extend it to the general nonlinear case and to develop new exactly energy-conserving and asymptotic-preserving finite volume schemes for its discretization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员