Predicting the future performance of young runners is an important research issue in experimental sports science and performance analysis. We analyse a data set with annual seasonal best performances of male middle distance runners for a period of 14 years and provide a modelling framework that accounts for both the fact that each runner has typically run in three distance events (800, 1500 and 5000 meters) and the presence of periods of no running activities. We propose a latent class matrix-variate state space model and we empirically demonstrate that accounting for missing data patterns in runners' careers improves the out of sample prediction of their performances over time. In particular, we demonstrate that for this analysis, the missing data patterns provide valuable information for the prediction of runner's performance.
翻译:预测年轻跑者的未来表现是实验性体育科学和绩效分析中的一个重要研究问题。我们分析了一套数据,其中显示男性中程跑者14年的季节性最佳年度表现,并提供了一个模型框架,其中既考虑到每个跑者通常在3个距离的活动中运行(800米、1500米和5000米),又考虑到有一段时间没有运行活动。我们提出了一个潜伏的阶级矩阵变异状态空间模型,我们从经验上证明,计算跑者职业中缺失的数据模式,可以改善对其长期表现的抽样预测。我们特别证明,对于这一分析,缺失的数据模式为预测跑者业绩提供了宝贵的信息。