Electroencephalogram (EEG) signals are effective tools towards seizure analysis where one of the most important challenges is accurate detection of seizure events and brain regions in which seizure happens or initiates. However, all existing machine learning-based algorithms for seizure analysis require access to the labeled seizure data while acquiring labeled data is very labor intensive, expensive, as well as clinicians dependent given the subjective nature of the visual qualitative interpretation of EEG signals. In this paper, we propose to detect seizure channels and clips in a self-supervised manner where no access to the seizure data is needed. The proposed method considers local structural and contextual information embedded in EEG graphs by employing positive and negative sub-graphs. We train our method through minimizing contrastive and generative losses. The employ of local EEG sub-graphs makes the algorithm an appropriate choice when accessing to the all EEG channels is impossible due to complications such as skull fractures. We conduct an extensive set of experiments on the largest seizure dataset and demonstrate that our proposed framework outperforms the state-of-the-art methods in the EEG-based seizure study. The proposed method is the only study that requires no access to the seizure data in its training phase, yet establishes a new state-of-the-art to the field, and outperforms all related supervised methods.


翻译:电子脑图(EEG)信号是用于进行缉获分析的有效工具,其中最重要的挑战之一是准确检测缉获事件和缉获发生或开始缉获的大脑区域;然而,所有现有的以机械学习为基础的缉获分析算法都需要获得标签的缉获数据,而获取标签数据则需要花费大量人力、昂贵和临床医生,因为对EEEG信号的视觉定性解释具有主观性,因此,这种算法依赖大量人力、昂贵和临床医生。在本文件中,我们提议以自我监督的方式,在不需要获得缉获数据的情况下,探测缉获渠道和剪辑。拟议方法通过使用正反分图来考虑EEEG图中所含的当地结构和背景信息。我们通过尽量减少对比性和基因化损失来培训我们的方法。使用当地EEG子图使得在接触所有EG频道时,由于头骨折等复杂因素,不可能做出适当的算法选择。我们提议在最大的缉获数据集上进行广泛的实验,并证明我们提议的框架超越了EEG缉获研究中采用的最新方法。拟议方法仅要求进行新的实地培训,而仅要求进行新的实地培训。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员