We present a method to extend the finite element library FEniCS to solve problems with domains in dimensions above three by constructing tensor product finite elements. This methodology only requires that the high dimensional domain is structured as a Cartesian product of two lower dimensional subdomains. In this study we consider linear partial differential equations, though the methodology can be extended to non-linear problems. The utilization of tensor product finite elements allows us to construct a global system of linear algebraic equations that only relies on the finite element infrastructure of the lower dimensional subdomains contained in FEniCS. We demonstrate the effectiveness of our methodology in three distinctive test cases. The first test case is a Poisson equation posed in a four dimensional domain which is a Cartesian product of two unit squares solved using the classical Galerkin finite element method. The second test case is the wave equation in space-time, where the computational domain is a Cartesian product of a two dimensional space grid and a one dimensional time interval. In this second case we also employ the Galerkin method. Finally, the third test case is an advection dominated advection-diffusion equation where the global domain is a Cartesian product of two one dimensional intervals. The streamline upwind Petrov-Galerkin method is applied to ensure discrete stability. In all three cases, optimal convergence rates are achieved with respect to h refinement.
翻译:我们提出一个方法,通过建造高压产品限制元素,将有限元素库FENICS扩展至三维以上领域的问题,通过构建高维域,解决三维以上领域的问题。这一方法仅要求高维域的结构结构是两个低维子域的笛卡尔产物。在本研究中,我们考虑线性部分方程式,尽管该方法可以扩大到非线性问题。使用高压产品限制元素,使我们能够构建一个线性代数方程式全球系统,该系统仅依赖于FENICS所含低维次域的有限元素基础设施。我们在三个不同的测试案例中展示了我们的方法的有效性。第一个测试案例是四维域的普瓦森方程式,这是使用古典加列金有限元素元素解析的两个单位方程式的卡尔特森产物。第二个测试案例是空间时的波方程式方程式,其计算域是两个维度空间网格和一个维度时间间隔的卡尔特里亚平面系统。在第二个案例中,我们还使用了加勒金方法。最后,第三个测试案例是两个域稳定性方位的软度对卡斯特洛平面平面公式。