Myocardial infarction (MI) is the leading cause of mortality in the world that occurs due to a blockage of the coronary arteries feeding the myocardium. An early diagnosis of MI and its localization can mitigate the extent of myocardial damage by facilitating early therapeutic interventions. Following the blockage of a coronary artery, the regional wall motion abnormality (RWMA) of the ischemic myocardial segments is the earliest change to set in. Echocardiography is the fundamental tool to assess any RWMA. Assessing the motion of the left ventricle (LV) wall only from a single echocardiography view may lead to missing the diagnosis of MI as the RWMA may not be visible on that specific view. Therefore, in this study, we propose to fuse apical 4-chamber (A4C) and apical 2-chamber (A2C) views in which a total of 12 myocardial segments can be analyzed for MI detection. The proposed method first estimates the motion of the LV wall by Active Polynomials (APs), which extract and track the endocardial boundary to compute myocardial segment displacements. The features are extracted from the A4C and A2C view displacements, which are concatenated and fed into the classifiers to detect MI. The main contributions of this study are 1) creation of a new benchmark dataset by including both A4C and A2C views in a total of 260 echocardiography recordings, which is publicly shared with the research community, 2) improving the performance of the prior work of threshold-based APs by a Machine Learning based approach, and 3) a pioneer MI detection approach via multi-view echocardiography by fusing the information of A4C and A2C views. Experimental results show that the proposed method achieves 90.91% sensitivity and 86.36% precision for MI detection over multi-view echocardiography. The software implementation is shared at https://github.com/degerliaysen/MultiEchoAI.
翻译:86. 心肌梗塞(MI)是造成世界内心肌梗塞导致死亡的主要原因。 心肌梗塞是世界内所有RWMA的基本工具。 只从单一回声心电图视图评估左心血管(LV)墙的动向。 对MI的早期诊断及其本地化可以促进早期治疗干预,减轻心肌损伤的程度。 在冠心动阻塞后, 区域墙壁动动心心心肌部分的异常(RWMA)是最早设定的改变。 声心术是评估任何RWMA的基本工具。 对左心血管(LV)墙的动向仅来自单一回声心动感官视角的动。 早期诊断MIMI的诊断,因为RWMA可能无法在这种特定观点上显现出来。 因此,在本研究中,我们提议将脑心动4- 心血管运动运动异常(RWMA) 和脑心电图中, 将总共12个心肌部分的计算法用于MI的检测。 拟议的方法首先估计LV墙的动动动动动动动动, 包括心心心心心心心心心心 心 心 心 心 心 心 心肌部的检测的检测, 以及心肌迁移的预的解的解的预感和心智分析, 数据分析是我心部的解的解的预结果和心部的解的演算,,,这是的演算的演算的演的演的演的演的演算的演算法是用来的演算法,, 和磁的演算的演算的演算法,,, 的演算的演算的演算的演算的演算法, 和轨道的演算是我的演的演算的演算的演算,, 的演的演的演的演的演的演的演的演算是,,, 和演算的演算的演算的演算法是, 和演的演的演的演的演的演的演算是的演的演的演的演的演的演的演的演的演的演化的演化的演化的演化的演化的演算和數數數,, 和數到</s>