In this paper, we investigate problems which are dual to the unification problem, namely the Fixed Point (FP) problem, Common Term (CT) problem and the Common Equation (CE) problem for string rewriting systems. Our main motivation is computing fixed points in systems, such as loop invariants in programming languages. We show that the fixed point (FP) problem is reducible to the common term problem. Our new results are: (i) the fixed point problem is undecidable for finite convergent string rewriting systems whereas it is decidable in polynomial time for finite, convergent and dwindling string rewriting systems, (ii) the common term problem is undecidable for the class of dwindling string rewriting systems, and (iii) for the class of finite, monadic and convergent systems, the common equation problem is decidable in polynomial time but for the class of dwindling string rewriting systems, common equation problem is undecidable.
翻译:在本文中,我们调查了与统一问题双重的问题,即固定点(FP)问题、共同条件(CT)问题和字符串重写系统的共同等同问题。我们的主要动机是计算系统中的固定点,如编程语言的循环变异性。我们显示固定点(FP)问题可以被复制到共同术语问题。我们的新结果是:(一)固定点问题对于有限的集中字符串重写系统来说是不可分化的,而对于有限、集中和不断缩小的字符串重写系统来说,固定点问题在多元时间内是不可分辨的,(二)共同术语问题对于正在减少的字符串重写系统类别是不可分辨的,以及(三)对于固定、monadic和趋同式系统类别来说,共同的方程式问题在多元时间内是可分解的,但对于缩小字符串重写系统的类别来说,共同的方程式问题是无法分辨的。