The ability to scale out training workloads has been one of the key performance enablers of deep learning. The main scaling approach is data-parallel GPU-based training, which has been boosted by hardware and software support for highly efficient inter-GPU communication, in particular via bandwidth overprovisioning. This support comes at a price: there is an order of magnitude cost difference between "cloud-grade" servers with such support, relative to their "consumer-grade" counterparts, although server-grade and consumer-grade GPUs can have similar computational envelopes. In this paper, we investigate whether the expensive hardware overprovisioning approach can be supplanted via algorithmic and system design, and propose a framework called CGX, which provides efficient software support for communication compression. We show that this framework is able to remove communication bottlenecks from consumer-grade multi-GPU systems, in the absence of hardware support: when training modern models and tasks to full accuracy, CGX provides self-speedups of 2-3X for an 8-GPU commodity node, enabling it to surpass the throughput of a much more expensive NVIDIA DGX-1 server. In the multi-node setting, CGX enables significant additional speedups by identifying and solving the novel adaptive compression problem, in which we can automatically set compression levels in a layer-wise fashion, balancing speedup and accuracy recovery.


翻译:扩大培训工作量的能力一直是深层学习的关键性能促进因素之一。主要的规模化方法是数据平行GPU基础培训,通过硬件和软件支持,对高效的GPU之间通信提供高效的硬件和软件支持,尤其是通过带宽过度提供,这种支持是有代价的:与“消费级”服务器相比,具有这种支持的“宽级”服务器与“消费级”服务器之间存在数量级的成本差异,尽管服务器级和消费者级GPU可以拥有类似的计算信封。在本文中,我们调查昂贵的硬件超载方法是否可以通过算法和系统设计加以更新,并提议一个称为CGX的框架,为通信压缩提供高效的软件支持。我们表明,在没有硬件支持的情况下,这一框架能够消除消费者级多级多级多级的多级服务器的通信瓶颈:当培训现代模型和任务达到完全准确性时,CGX为8-GPU的商品节点提供2-3x的自加速率,使其能够超过一个更昂贵的超速的硬件超时,通过算和系统设计,提出一个称为CVIADG-DG-DDD-ISMAx级的升级的升级的升级的升级服务器,从而确定一个具有新的升级的升级的升级的升级的系统。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员