Inter-rater reliability (IRR) has been the prevalent quality and precision measure in ratings from multiple raters. However, applicant selection procedures based on ratings from multiple raters usually result in a binary outcome. This final outcome is not considered in IRR, which instead focuses on the ratings of the individual subjects or objects. In this work, we outline how to transform the selection procedures into a binary classification framework and develop a quantile approximation which connects a measurement model for the ratings with the binary classification framework. The quantile approximation allows us to estimate the probability of correctly selecting the best applicants and assess error probabilities when evaluating the quality of selection procedures using ratings from multiple raters. We draw connections between the inter-rater reliability and the binary classification metrics, showing that binary classification metrics depend solely on the IRR coefficient and proportion of selected applicants. We assess the performance of the quantile approximation in a simulation study and apply it in an example comparing the reliability of multiple grant peer review selection procedures.


翻译:跨船可靠性(IRR)是多个评级者评级的普遍质量和精确度衡量,然而,基于多个评级者评级的申请人甄选程序通常产生二元结果;最后结果未在IRR中加以考虑,而侧重于对个别主题或对象的评级;在这项工作中,我们概述了如何将甄选程序转化为二元分类框架,并开发了将评级衡量模式与二元分类框架联系起来的四分点近似值;四分点近似值使我们能够估计正确选择最佳申请人的概率,并在使用多个评级者评级评估甄选程序的质量时评估误差概率;我们将跨船可靠性与二分分分分分分标准联系起来,表明双分分类指标完全取决于IRR系数和选定申请人的比例;我们在模拟研究中评估四分点近率值的性能,并在比较多个赠款同行审查甄选程序的可靠性时将其应用为例。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员