Natural gradient is an advanced optimization method based on information geometry, where the Fisher metric plays a crucial role. Its quantum counterpart, known as quantum natural gradient (QNG), employs the symmetric logarithmic derivative (SLD) metric, one of the quantum Fisher metrics. While quantization in physics is typically well-defined via the canonical commutation relations, the quantization of information-theoretic quantities introduces inherent arbitrariness. To resolve this ambiguity, monotonicity has been used as a guiding principle for constructing geometries in physics, as it aligns with physical intuition. Recently, a variant of QNG, which we refer to as nonmonotonic QNG in this paper, was proposed by relaxing the monotonicity condition. It was shown to achieve faster convergence compared to conventional QNG. In this paper, we investigate the properties of nonmonotonic QNG. To ensure the paper is self-contained, we first demonstrate that the SLD metric is locally optimal under the monotonicity condition and that non-monotone quantum Fisher metrics can lead to faster convergence in QNG. Previous studies primarily relied on a specific type of quantum divergence and assumed that density operators are full-rank. Here, we explicitly consider an alternative quantum divergence and extend the analysis to non-full-rank cases. Additionally, we explore how geometries can be designed using Petz functions, given that quantum Fisher metrics are characterized through them. Finally, we present numerical simulations comparing different quantum Fisher metrics in the context of parameter estimation problems in quantum circuit learning.


翻译:自然梯度是一种基于信息几何的先进优化方法,其中Fisher度量起着关键作用。其量子对应物称为量子自然梯度(QNG),采用对称对数导数(SLD)度量——量子Fisher度量之一。尽管物理学中的量子化通常通过正则对易关系明确定义,但信息论量的量子化引入了固有的任意性。为解决这一模糊性,单调性已被用作构建物理学几何的指导原则,因其符合物理直觉。最近,通过放宽单调性条件,提出了一种QNG变体(本文中我们称之为非单调QNG),并证明其相比传统QNG能实现更快的收敛速度。本文中,我们研究非单调QNG的性质。为确保论文自包含,我们首先证明SLD度量在单调性条件下是局部最优的,且非单调量子Fisher度量可导致QNG中更快的收敛。先前研究主要依赖特定类型的量子散度,并假设密度算符是满秩的。在此,我们明确考虑一种替代量子散度,并将分析扩展到非满秩情形。此外,鉴于量子Fisher度量通过Petz函数表征,我们探讨如何利用Petz函数设计几何。最后,我们通过数值模拟比较量子电路学习中参数估计问题下的不同量子Fisher度量。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员