The Swap gate is a ubiquitous tool for moving information on quantum hardware, yet it can be considered a classical operation because it does not entangle product states. Genuinely quantum operations could outperform Swap for the task of permuting qubits within an architecture, which we call routing. We consider quantum routing in two models: (1) allowing arbitrary two-qubit unitaries, or (2) allowing Hamiltonians with norm-bounded interactions. We lower bound the circuit depth or time of quantum routing in terms of spectral properties of graphs representing the architecture interaction constraints, and give a generalized upper bound for all simple connected $n$-vertex graphs. In particular, we give conditions for a superpolynomial classical-quantum routing separation, which exclude graphs with a small spectral gap and graphs of bounded degree. Finally, we provide examples of a quadratic separation between gate-based and Hamiltonian routing models with a constant number of local ancillas per qubit and of an $\Omega(n)$ speedup if we also allow fast local interactions.
翻译:Swap Gate 是移动量子硬件信息的无处不在的工具, 但是它可以被视为一种典型操作, 因为它没有缠绕着产品状态。 真正量子操作可以比在结构内( 我们称之为路由) 的二次调整 量子任务更顺利地交换。 我们考虑以两种模式选择量子路由:(1) 允许任意使用双倍的单词, 或者 (2) 允许汉密尔顿人使用受规范限制的相互作用。 我们从代表结构交互作用限制的图形的光谱特性上将量子路由的深度或时间捆绑起来, 并且给所有简单连接的 $n- verdex 图形设定一个通用的上限 。 特别是, 我们给超极极级的经典量子路由分离提供条件, 排除光谱小的图形和受约束程度的图形。 最后, 我们提供了基于门的和汉密尔顿路由模型之间的四方分解的例子, 与每个qubit 和 $\ Omega (n) 速度的固定数量 。