Due to the beyond-classical capability of quantum computing, quantum machine learning is applied independently or embedded in classical models for decision making, especially in the field of finance. Fairness and other ethical issues are often one of the main concerns in decision making. In this work, we define a formal framework for the fairness verification and analysis of quantum machine learning decision models, where we adopt one of the most popular notions of fairness in the literature based on the intuition -- any two similar individuals must be treated similarly and are thus unbiased. We show that quantum noise can improve fairness and develop an algorithm to check whether a (noisy) quantum machine learning model is fair. In particular, this algorithm can find bias kernels of quantum data (encoding individuals) during checking. These bias kernels generate infinitely many bias pairs for investigating the unfairness of the model. Our algorithm is designed based on a highly efficient data structure -- Tensor Networks -- and implemented on Google's TensorFlow Quantum. The utility and effectiveness of our algorithm are confirmed by the experimental results, including income prediction and credit scoring on real-world data, for a class of random (noisy) quantum decision models with 27 qubits ($2^{27}$-dimensional state space) tripling ($2^{18}$ times more than) that of the state-of-the-art algorithms for verifying quantum machine learning models.
翻译:由于量子计算超古典能力,量子机器学习独立应用,或嵌入传统决策模式,特别是在金融领域。公平和其他伦理问题往往是决策的主要关注问题之一。在这项工作中,我们为衡子机器学习决策模式的公平性核查和分析确定了正式框架。我们根据直觉在文献中采用了最受欢迎的公平概念之一 -- -- 任何两个类似的个人都必须得到类似的对待,因而是公正的。我们表明量子噪音可以提高公平性,并发展一种算法,以检查(noisy)量子机器学习模式是否公平。特别是,这种算法在检查过程中可以发现量子数据(编码个人)的偏差内核。这些偏差内核为调查模型的不公平性产生了无限多的偏差配对。我们的算法是基于高效的数据结构 -- -- Tensor 网络 -- 并在谷歌TensorFlow Quantum上实施。我们的算法的实用性和有效性得到实验结果的证实,包括收入预测和信用对真实值数据(编码个人)的内核数据(编码个人)的内核数据内存。这些偏差对调查模型(27号)的数学级(州级)的直径),用于对等级的直径级(2x级的计算,而不是等级的计算。