We present a divide-and-conquer approach to deterministically prepare Dicke states $\lvert D_k^n\rangle$ (i.e., equal-weight superpositions of all $n$-qubit states with Hamming Weight $k$) on quantum computers. In an experimental evaluation for up to $n=6$ qubits on IBM Quantum Sydney and Montreal devices, we achieve significantly higher state fidelity compared to previous results [Mukherjee and others, TQE'2020], [Cruz and others, QuTe'2019]. The fidelity gains are achieved through several techniques: Our circuits first "divide" the Hamming weight between blocks of $n/2$ qubits, and then "conquer" those blocks with improved versions of Dicke state unitaries [B\"artschi and others, FCT'2019]. Due to the sparse connectivity on IBM's heavy-hex-architectures, these circuits are implemented for linear nearest neighbor topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation and hardware progress.
翻译:我们提出了一种分而治之的方法,用于在量子计算机上确定迪克状态$\lvert D_k ⁇ n\rangle$(即所有美元-qubit州与Hamming Weight Weight $k$(美元)的等量超位) 。在IBM 量子悉尼 和蒙特利尔 设备上最多为 $= 6 qubits 的实验性评估中,我们实现了比以前的结果[Mukherjee 和其他人, TQE'2020]、 [Cruz 和其他人, Que'Te'2019] 高得多的国家忠诚度。 忠诚度增益是通过几种技术实现的: 我们的电路先是“divide”在$/2 Qqubit两个区块之间,然后是“crecoquil” 这些区块的改良版[B\“artchi 和其他人, FCT'2019] 。由于IBM 重力结构的互不相连性,这些电路是用来测量近距离最接近的顶部位测量,我们测量的硬度测量中的进一步误。