Researchers are interested in examining between-individual differences in within-individual changes. If the process under investigation is tracked for a long time, its trajectory may show a certain degree of nonlinearity, so the rate-of-change is not constant. A fundamental goal of modeling such nonlinear processes is to estimate model parameters that reflect meaningful aspects of change, including the rate-of-change and other parameters that shed light on substantive hypotheses. However, if the measurement occasion is unstructured, existing models cannot simultaneously estimate these two types of parameters. This article has three goals. First, we view the change over time as the area under the curve (AUC) of the rate-of-change versus time ($r-t$) graph. Second, with the instantaneous rate-of-change midway through a time interval to approximate the average rate of change during that interval, we propose a new specification to describe longitudinal processes. In addition to obtaining the individual rate-of-change and other parameters related to specific research questions, the new specification allows for unequally-space study waves and individual measurement occasions around each wave. Third, we derive the model-based change-from-baseline, a common measure to evaluate change over time. We evaluate the proposed specification through a simulation study and a real-world data analysis. We also provide \textit{OpenMx} and \textit{Mplus 8} code for each model with the novel specification.
翻译:研究人员感兴趣的是研究个人内部变化中的个体差异。 如果对调查过程进行长期跟踪,其轨迹可能显示某种程度的不线性,因此变化率并不固定。建模这种非线性进程的基本目标是估计反映有意义变化的模型参数,包括变化率和揭示实质性假设的其他参数。但是,如果测量时间不结构,现有模型无法同时估计这两类参数。这篇文章有三个目标。首先,我们视时间变化的变化为变化率与时间(美元-美元)曲线下的一个区域。第二,随着瞬间变化率的中间间隔以近似该间隔期间的平均变化率,我们提出新的规格来描述纵向过程。除了获得与具体研究问题有关的单个变化率和其他参数外,新的规格允许在每一波上进行不均匀的空间研究波和单个测量时间。第三,我们用基于时间的进度(AUC) 与时间(美元-美元) 的规格(美元-美元-美元) 的曲线下区域。第二,即瞬间变化率变化率中间隔,以接近该间隔期间的平均变化率速度,我们提出一个新的规格分析。我们用一个基于模型的模型的模型和方向来评估。