Causal inference in observational studies can be challenging when confounders are subject to missingness. Generally, the identification of causal effects is not guaranteed even under restrictive parametric model assumptions when confounders are missing not at random. To address this, We propose a general framework to establish the identification of causal effects when confounders are subject to treatment-independent missingness, which means that the missing data mechanism is independent of the treatment, given the outcome and possibly missing confounders. We give special consideration to commonly-used models for continuous and binary outcomes and provide counterexamples when identification fails. For estimation, we provide a weighted estimation equation estimating method for model parameters and purpose three estimators for the average causal effect based on the estimated models. We evaluate the finite-sample performance of the estimators via simulations. We further illustrate the proposed method with real data sets from the National Health and Nutrition Examination Survey.
翻译:在混杂因素缺失不随治疗而缺失的情况下进行因果推断
观察性研究中的因果推断在混杂因素存在缺失时可能具有挑战性。一般来说,即使在限制性参数模型假设下,混杂因素属于非随机缺失情况下,也不能保证因果效应的识别。为了解决这个问题,我们提出了一个普适性的框架,用于在混杂因素存在治疗无关缺失的条件下建立因果效应的识别,即意味着在给定结果和可能缺失的混杂因素的情况下,缺失的数据机制是独立于治疗的。我们特别关注了连续和二元结果的常用模型,并提供了在识别失败时的反例。对于估计,我们提供了一种基于加权估计方程估计模型参数的方法,并针对估计的模型提供了三个平均因果效应估计器。通过仿真评估了估计器的有限样本性能。我们进一步通过国家健康与营养调查数据集的实际数据说明了所提出的方法。