Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, meso-scale and continuum simulations. We present an automated workflow, AutoMat, that accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions such as machine learning surrogates or automated robotic experiments "in-the-loop". The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
翻译:大规模电气化对于解决气候危机至关重要,但是在化学工业和运输方面,在充分实现电气化方面仍存在若干科学和技术挑战。在这两个领域,新的电化学材料都至关重要,但是其开发目前严重依赖人类时间密集的实验试验和错误以及计算成本高昂的第一原则、中尺度和连续模拟。我们提出了一个自动化工作流程,AutoMat,通过采用从头原则到连续装置模型的跨尺度自动输入生成和管理模拟来加快这些计算步骤。此外,我们展示了如何无缝地整合多纤维性预测,如机器学习代孕或自动机器人实验“在流动中” 。自动化框架的实施采用了设计空间搜索技术,通过隐含式学习设计功能来大大加快整个材料发现管道,从而优化设备在多个计量中的性能。我们讨论了AutMat在电解和能源存储方面的实例,并突出经验教训。