Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and differential equations. In a forward-type bisimulation, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulation (GFB) for dynamical systems over commutative monoids and develop a partition refinement algorithm to compute the largest one. When the monoid is (R, +), our framework recovers probabilistic bisimulation for Markov chains and more recent forward bisimulations for systems of nonlinear ordinary differential equations. When the monoid is (R, product) we can obtain nonlinear model reductions for discrete-time dynamical systems and ordinary differential equations where each variable in the quotient model represents the product of original variables in the equivalence class. When the domain is a finite set such as the Booleans B, we can apply GFB to Boolean networks, a widely used dynamical model in computational biology. Using a prototype implementation of our minimization algorithm for GFB, we find several disjunction- and conjuction-preserving reductions on 60 Boolean networks from two well-known model repositories.


翻译:微量刺激的定量概念是尽量减少马可夫链和差异方程式等动态模型的著名工具。 在前型的模拟中, 商数模型中的每个州代表一个等值类, 动态进化给出了原始模型中其成员的总和。 在这里, 我们为动态系统引入了通用的前向微量增殖( GFB), 而不是通融单体, 并开发了一个用于计算最大等值的分区精细算法。 当单体是( R, +) 时, 我们的框架可以恢复马尔科夫链和较近期的非线性普通差异方程式系统的前向型微量增殖。 当单体是( R, + ) 时, 我们可以得到对非线性平面平面平面平面方程式( R, 产物) 和普通差异方程式中的非线性模型减量值。 当域是像 Booleans B 这样的有限数据集时, 我们就可以将GFBOUB 重新应用到 Boolean 网络, 一个广泛使用的动态模型模型, 在计算生物学中找到我们广泛使用的数个常用的动态模型模型模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Solving estimating equations with copulas
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员