Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and differential equations. In a forward-type bisimulation, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulation (GFB) for dynamical systems over commutative monoids and develop a partition refinement algorithm to compute the largest one. When the monoid is (R, +), our framework recovers probabilistic bisimulation for Markov chains and more recent forward bisimulations for systems of nonlinear ordinary differential equations. When the monoid is (R, product) we can obtain nonlinear model reductions for discrete-time dynamical systems and ordinary differential equations where each variable in the quotient model represents the product of original variables in the equivalence class. When the domain is a finite set such as the Booleans B, we can apply GFB to Boolean networks, a widely used dynamical model in computational biology. Using a prototype implementation of our minimization algorithm for GFB, we find several disjunction- and conjuction-preserving reductions on 60 Boolean networks from two well-known model repositories.
翻译:微量刺激的定量概念是尽量减少马可夫链和差异方程式等动态模型的著名工具。 在前型的模拟中, 商数模型中的每个州代表一个等值类, 动态进化给出了原始模型中其成员的总和。 在这里, 我们为动态系统引入了通用的前向微量增殖( GFB), 而不是通融单体, 并开发了一个用于计算最大等值的分区精细算法。 当单体是( R, +) 时, 我们的框架可以恢复马尔科夫链和较近期的非线性普通差异方程式系统的前向型微量增殖。 当单体是( R, + ) 时, 我们可以得到对非线性平面平面平面平面方程式( R, 产物) 和普通差异方程式中的非线性模型减量值。 当域是像 Booleans B 这样的有限数据集时, 我们就可以将GFBOUB 重新应用到 Boolean 网络, 一个广泛使用的动态模型模型, 在计算生物学中找到我们广泛使用的数个常用的动态模型模型模型。