Production optimization under geological uncertainty is computationally expensive, as a large number of well control schedules must be evaluated over multiple geological realizations. In this work, a convolutional-recurrent neural network (CNN-RNN) proxy model is developed to predict well-by-well oil and water rates, for given time-varying well bottom-hole pressure (BHP) schedules, for each realization in an ensemble. This capability enables the estimation of the objective function and nonlinear constraint values required for robust optimization. The proxy model represents an extension of a recently developed long short-term memory (LSTM) RNN proxy designed to predict well rates for a single geomodel. A CNN is introduced here to processes permeability realizations, and this provides the initial states for the RNN. The CNN-RNN proxy is trained using simulation results for 300 different sets of BHP schedules and permeability realizations. We demonstrate proxy accuracy for oil-water flow through multiple realizations of 3D multi-Gaussian permeability models. The proxy is then incorporated into a closed-loop reservoir management (CLRM) workflow, where it is used with particle swarm optimization and a filter-based method for nonlinear constraint satisfaction. History matching is achieved using an adjoint-gradient-based procedure. The proxy model is shown to perform well in this setting for five different (synthetic) `true' models. Improved net present value along with constraint satisfaction and uncertainty reduction are observed with CLRM. For the robust production optimization steps, the proxy provides O(100) runtime speedup over simulation-based optimization.


翻译:地质不确定性之下的生产优化在计算上是昂贵的,因为对于多种地质成就,必须评估大量的良好控制时间表。在这项工作中,开发了一个循环经常性神经网络代用模型(CNN-RNNN),以预测井水和油水的速率,为每个在整体中实现的井水压力表(BHP)提供时间变化式井水压力表(BHP),这种能力使得能够估算稳健优化所需的客观功能和非线性约束值。代用模型代表了最近开发的长期短期内存(LSTM) RNN代理的延伸,旨在预测单一地理模型的速率。在这里,引入了CNNN(CNN)代理模型,以预测渗透性实现的速率。CNN-RN的代用模拟结果对300套不同的BHP时间表和渗透性实现。我们通过基于3D多基多伽西西百米渗透模型来显示石油流的代用准确性。代用模型随后纳入一个封闭式的短期储油库管理(CLRM),用于预测单一地质模型的速率,这为RNNNCRM的初始生产实现率流程流程流程,并使用一种稳定度优化程序。我们使用一种压压式的递增压式的递增压方法来进行压压。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员