In many observational studies in social science and medical applications, subjects or individuals are connected, and one unit's treatment and attributes may affect another unit's treatment and outcome, violating the stable unit treatment value assumption (SUTVA) and resulting in interference. To enable feasible inference, many previous works assume the ``exchangeability'' of interfering units, under which the effect of interference is captured by the number or ratio of treated neighbors. However, in many applications with distinctive units, interference is heterogeneous. In this paper, we focus on the partial interference setting, and restrict units to be exchangeable conditional on observable characteristics. Under this framework, we propose generalized augmented inverse propensity weighted (AIPW) estimators for general causal estimands that include direct treatment effects and spillover effects. We show that they are consistent, asymptotically normal, semiparametric efficient, and robust to heterogeneous interference as well as model misspecifications. We also apply our method to the Add Health dataset and find that smoking behavior exhibits interference on academic outcomes.


翻译:在许多社会科学和医疗应用的观察研究中,主体或个人相互关联,一个单位的治疗和属性可能影响另一个单位的治疗和结果,违反稳定的单位治疗价值假设(SUTPVA),并导致干扰。为了进行可行的推断,许多以前的工作假设干预单位的“可交换性”为“可交换性”,干预的影响由受治疗邻居的数量或比例所捕捉。然而,在许多使用独特单位的应用中,干扰是多种多样的。在本文件中,我们侧重于部分干扰设置,限制单位的可交换性以可观察到的特征为条件。在这个框架内,我们提议普遍增加反向偏移加权(AIPW)的估量,以包括直接治疗效应和溢出效应。我们表明,它们具有一致性,即即正常的、半对称效率,并且强于混合干扰以及模型性。我们还将我们的方法用于添加健康数据集,并发现吸烟行为会干扰学术结果。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
72+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月23日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员