We describe two formalisms for defining graph languages, and prove that they are equivalent: 1. Separator logic. This is first-order logic on graphs which is allowed to use the edge relation, and for every $n \in \{0,1,\ldots \}$ a relation of arity $n+2$ which says that ``vertex $s$ can be connected to vertex $t$ by a path that avoids vertices $v_1,\ldots,v_n$''. 2. Star-free graph expressions. These are expressions that describe graphs with distinguished vertices called ports, and which are built from finite languages via Boolean combinations and the operations on graphs with ports used to construct tree decompositions. Furthermore, we prove a variant of Sch\"utzenberger's theorem (about star-free languages being those recognized by a periodic monoids) for graphs of bounded pathwidth. A corollary is that, given $k$ and a graph language represented by an \mso formula, one can decide if the language can be defined in either of two equivalent formalisms on graphs of pathwidth at most $k$.
翻译:我们描述用于定义图形语言的两种形式主义, 并证明它们是等效的 : 1. 分隔逻辑。 这是允许使用边际关系的图表的第一阶逻辑, 而对于每一个 $ $+2 美元 的 emer $+ 美元关系, 表示“ vertex $s” 可以通过一条避免 verices $_ 1,\ldots,v_n''. 2. 无星图表达式的路径连接到顶点 。 这些表达式用来描述使用边际关系的图表, 并且通过 Boolean 组合和 用于构建树分解位置的图形上的操作从限定语言中构建的。 此外, 我们证明Sch\\\\ utzenberger 的标语( 由定期单元识别的无星语言) 。 一个必然结果是, 以 $k $ 和 美元 表示的图形语言代表着不同的顶点公式, 多数人可以在两个正等量的路径上决定 。