Information design in an incomplete information game includes a designer with the goal of influencing players' actions through signals generated from a designed probability distribution so that its objective function is optimized. If the players have quadratic payoffs that depend on the players' actions and an unknown payoff-relevant state, and signals on the state that follow a Gaussian distribution conditional on the state realization, then the information design problem under quadratic design objectives is a semidefinite program (SDP). We consider a setting in which the designer has partial knowledge on agents' utilities. We address the uncertainty about players' preferences by formulating a robust information design problem. Specifically, we consider ellipsoid perturbations over payoff matrices in linear-quadratic-Gaussian (LQG) games. We show that this leads to a tractable robust SDP formulation. Using the robust SDP formulation, we obtain analytical conditions for the optimality of no information and full information disclosure. The robust convex program is also extended to interval and general convex cone uncertainty sets on the payoff matrices. Numerical studies are carried out to identify the relation between the perturbation levels and the optimal information structures.


翻译:在不完整的信息游戏中,信息设计包含一个设计师,目的是通过设计概率分布产生的信号影响玩家的行动,从而优化其客观功能。如果玩家有取决于玩家行动的四倍报酬和未知报酬相关状态的四倍报酬,并且发出信号,说明遵循高斯分配以国家实现为条件的状态,那么四分设计目标下的信息设计问题是一个半无限期程序(SDP)。我们考虑设计师对代理商的公用事业拥有部分知识的设置。我们通过开发一个强大的信息设计问题来解决玩家偏好方面的不确定性。具体地说,我们考虑在线性赤道-高森(LQG)游戏中,对付款矩阵进行自动渗透。我们表明,这会导致一种可移植的稳健的 SDP 配制。我们使用强的 SDP 配方, 获得关于不提供信息和充分信息披露的最佳性的分析条件。强健健的 convex 程序也扩展为间隔时间和一般 convex conde 配对报酬矩阵的不确定性设置。我们进行了定量研究,以确定最佳信息水平和最佳信息结构之间的关系。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2018年6月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
92+阅读 · 2021年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2018年6月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员