Information design in an incomplete information game includes a designer with the goal of influencing players' actions through signals generated from a designed probability distribution so that its objective function is optimized. If the players have quadratic payoffs that depend on the players' actions and an unknown payoff-relevant state, and signals on the state that follow a Gaussian distribution conditional on the state realization, then the information design problem under quadratic design objectives is a semidefinite program (SDP). We consider a setting in which the designer has partial knowledge on agents' utilities. We address the uncertainty about players' preferences by formulating a robust information design problem. Specifically, we consider ellipsoid perturbations over payoff matrices in linear-quadratic-Gaussian (LQG) games. We show that this leads to a tractable robust SDP formulation. Using the robust SDP formulation, we obtain analytical conditions for the optimality of no information and full information disclosure. The robust convex program is also extended to interval and general convex cone uncertainty sets on the payoff matrices. Numerical studies are carried out to identify the relation between the perturbation levels and the optimal information structures.
翻译:在不完整的信息游戏中,信息设计包含一个设计师,目的是通过设计概率分布产生的信号影响玩家的行动,从而优化其客观功能。如果玩家有取决于玩家行动的四倍报酬和未知报酬相关状态的四倍报酬,并且发出信号,说明遵循高斯分配以国家实现为条件的状态,那么四分设计目标下的信息设计问题是一个半无限期程序(SDP)。我们考虑设计师对代理商的公用事业拥有部分知识的设置。我们通过开发一个强大的信息设计问题来解决玩家偏好方面的不确定性。具体地说,我们考虑在线性赤道-高森(LQG)游戏中,对付款矩阵进行自动渗透。我们表明,这会导致一种可移植的稳健的 SDP 配制。我们使用强的 SDP 配方, 获得关于不提供信息和充分信息披露的最佳性的分析条件。强健健的 convex 程序也扩展为间隔时间和一般 convex conde 配对报酬矩阵的不确定性设置。我们进行了定量研究,以确定最佳信息水平和最佳信息结构之间的关系。</s>