In this paper, we explore the ability of sequence to sequence models to perform cross-domain reasoning. Towards this, we present a prompt-template-filling approach to enable sequence to sequence models to perform cross-domain reasoning. We also present a case-study with commonsense and health and well-being domains, where we study how prompt-template-filling enables pretrained sequence to sequence models across domains. Our experiments across several pretrained encoder-decoder models show that cross-domain reasoning is challenging for current models. We also show an in-depth error analysis and avenues for future research for reasoning across domains
翻译:在本文中,我们探索了序列序列对模型进行顺序排列以进行跨域推理的能力。 为此,我们提出了一个迅速填充模板的方法,以使模型进行跨域推理的顺序排列。我们还提出了一个关于常识和健康及福祉领域的案例研究,我们研究了迅速填充模板如何使预先培训的序列能够对跨域的模型进行排序。我们在若干经过预先训练的编码器-解码器模型中的实验表明,跨域推理对当前模型具有挑战性。我们还展示了深入的错误分析和未来研究跨域推理的渠道。