In the wake of a cybersecurity incident, it is crucial to promptly discover how the threat actors breached security in order to assess the impact of the incident and to develop and deploy countermeasures that can protect against further attacks. To this end, defenders can launch a cyber-forensic investigation, which discovers the techniques that the threat actors used in the incident. A fundamental challenge in such an investigation is prioritizing the investigation of particular techniques since the investigation of each technique requires time and effort, but forensic analysts cannot know which ones were actually used before investigating them. To ensure prompt discovery, it is imperative to provide decision support that can help forensic analysts with this prioritization. A recent study demonstrated that data-driven decision support, based on a dataset of prior incidents, can provide state-of-the-art prioritization. However, this data-driven approach, called DISCLOSE, is based on a heuristic that utilizes only a subset of the available information and does not approximate optimal decisions. To improve upon this heuristic, we introduce a principled approach for data-driven decision support for cyber-forensic investigations. We formulate the decision-support problem using a Markov decision process, whose states represent the states of a forensic investigation. To solve the decision problem, we propose a Monte Carlo tree search based method, which relies on a k-NN regression over prior incidents to estimate state-transition probabilities. We evaluate our proposed approach on multiple versions of the MITRE ATT&CK dataset, which is a knowledge base of adversarial techniques and tactics based on real-world cyber incidents, and demonstrate that our approach outperforms DISCLOSE in terms of techniques discovered per effort spent.
翻译:在网络安全事件发生后,必须迅速发现威胁行为体如何破坏安全,以便评估事件的影响,制定和部署能够防止进一步攻击的对策。为此,维权者可以开展网络法医调查,发现事件威胁行为体使用的技术。这种调查的一个根本挑战是优先调查特定技术,因为每项技术的调查需要时间和努力,但法医分析员无法在调查前知道实际使用了哪些技术。为了确保迅速发现,必须提供决策支持,以帮助法医分析家确定优先次序。最近的研究表明,基于以往事件数据集的数据驱动决策支持可以提供最新的优先次序。然而,这种数据驱动方法,即DISCLOSE, 是基于一个超自然理论,仅利用现有信息的一组,并不近似最佳决定。为了改进这种超常性,我们采用原则性方法,为网络安全性调查提供数据驱动决策支持。我们利用Markov决定支持的问题,基于以往事件的数据集,我们用MARTFLLL的系统搜索方法,我们用MLFC的模型来评估了我们之前的模型。</s>