The joint hyperspectral image (HSI) and LiDAR data classification aims to interpret ground objects at more detailed and precise level. Although deep learning methods have shown remarkable success in the multisource data classification task, self-supervised learning has rarely been explored. It is commonly nontrivial to build a robust self-supervised learning model for multisource data classification, due to the fact that the semantic similarities of neighborhood regions are not exploited in existing contrastive learning framework. Furthermore, the heterogeneous gap induced by the inconsistent distribution of multisource data impedes the classification performance. To overcome these disadvantages, we propose a Nearest Neighbor-based Contrastive Learning Network (NNCNet), which takes full advantage of large amounts of unlabeled data to learn discriminative feature representations. Specifically, we propose a nearest neighbor-based data augmentation scheme to use enhanced semantic relationships among nearby regions. The intermodal semantic alignments can be captured more accurately. In addition, we design a bilinear attention module to exploit the second-order and even high-order feature interactions between the HSI and LiDAR data. Extensive experiments on four public datasets demonstrate the superiority of our NNCNet over state-of-the-art methods. The source codes are available at \url{https://github.com/summitgao/NNCNet}.
翻译:联合超光谱图像(HSI)和LiDAR数据分类旨在更详细、更精确地解释地面物体。虽然深层次的学习方法在多来源数据分类任务中表现出显著的成功,但很少探索自我监督的学习。由于在现有的对比式学习框架内没有利用邻近地区的语义相似性,因此,通常没有三思而后行,为多来源数据分类建立一个强大的自我监督学习模型。此外,由于多来源数据分布不一,造成差异性差异,妨碍了分类工作。为了克服这些缺点,我们提议建立一个近邻相邻对立学习网络(NNNCNet),充分利用大量无标签的数据来学习歧视性特征表征。具体地说,我们提议一个最近的邻居对多源数据增强计划,以利用附近区域之间强化的语义关系。联动语系校对可以更精确地捕捉到。此外,我们设计了一个双线关注模块,以利用第二顺序,甚至高顺序特征互动。我们提议建立一个基于HSI和LDAR数据的近端对立点的对比学习网络。关于四种公共数据网的大规模实验,展示了我们现有的NCASet/NCSOM的优势源。