Data-based approaches are promising alternatives to the traditional analytical constitutive models for solid mechanics. Herein, we propose a Gaussian process (GP) based constitutive modeling framework, specifically focusing on planar, hyperelastic and incompressible soft tissues. The strain energy density of soft tissues is modeled as a GP, which can be regressed to experimental stress-strain data obtained from biaxial experiments. Moreover, the GP model can be weakly constrained to be convex. A key advantage of a GP-based model is that, in addition to the mean value, it provides a probability density (i.e. associated uncertainty) for the strain energy density. To simulate the effect of this uncertainty, a non-intrusive stochastic finite element analysis (SFEA) framework is proposed. The proposed framework is verified against an artificial dataset based on the Gasser--Ogden--Holzapfel model and applied to a real experimental dataset of a porcine aortic valve leaflet tissue. Results show that the proposed framework can be trained with limited experimental data and fits the data better than several existing models. The SFEA framework provides a straightforward way of using the experimental data and quantifying the resulting uncertainty in simulation-based predictions.
翻译:以数据为基础的方法是传统分析性固态机械构成模型的有希望的替代方法。在这里,我们提议一个基于Gaussian进程(GP)的构成模型框架,具体侧重于平面、超弹性和不压缩软组织。软组织的压力能量密度模型是一个GP,可以追溯到从两轴实验中获得的实验性压力-压力-压力分析数据。此外,GP模型可能受到微弱的制约,难以成为锥形。基于GP的模型的一个主要优势是,除了平均值外,它还为压力能源密度提供了概率密度(即相关的不确定性)。为了模拟这种不确定性的影响,提议了一个非侵入性微量元素分析(SFEA)框架。根据基于Gasser-Ogden-Holzapfel模型的人工数据集,对拟议框架进行了核查,并应用于孔晶化的活性活性活性活性阀组织的真正实验数据集。结果显示,可以用有限的实验性数据来培训拟议框架,并且用更直截的实验性数据进行模拟,从而提供比现有的不确定性模型更好的数据。