Traditional tabular classifiers provide explainable decision-making with interpretable features(concepts). However, using their explainability in vision tasks has been limited due to the pixel representation of images. In this paper, we design Img2Tabs that classify images by concepts to harness the explainability of tabular classifiers. Img2Tabs encode image pixels into tabular features by StyleGAN inversion. Since not all of the resulting features are class-relevant or interpretable due to their generative nature, we expect Img2Tab classifiers to discover class-relevant concepts automatically from the StyleGAN features. Thus, we propose a novel method using the Wasserstein-1 metric to quantify class-relevancy and interpretability simultaneously. Using this method, we investigate whether important features extracted by tabular classifiers are class-relevant concepts. Consequently, we determine the most effective classifier for Img2Tabs in terms of discovering class-relevant concepts automatically from StyleGAN features. In evaluations, we demonstrate concept-based explanations through importance and visualization. Img2Tab achieves top-1 accuracy that is on par with CNN classifiers and deep feature learning baselines. Additionally, we show that users can easily debug Img2Tab classifiers at the concept level to ensure unbiased and fair decision-making without sacrificing accuracy.


翻译:传统列表分类器提供可解释的特性( 概念) 。 但是, 由于图像的像素表达方式, 在视觉任务中使用它们的可解释性是有限的, 因而在视觉任务中使用它们的可解释性是有限的。 在本文中, 我们设计了 Img2Tab 将图像按概念分类, 以利用列表分类器的可解释性进行解释性分类。 Img2Tab 将图像像素编码成由StypeGAN 翻版的列表特性。 由于由此产生的特性并非都与阶级相关或可解释, 我们期望 Img2Tab 分类器能自动从StyleGAN 特性中发现与阶级相关的概念。 因此, 我们建议使用一种新颖的方法, 使用 瓦塞斯坦-1 标准, 来量化分类器分类器的可同时理解性和可解释性。 使用这种方法, 我们调查表格分类器所提取的重要特性是否与阶级相关概念有关。 因此, 我们确定 Img2Tab 最有效的分类器在SyleGAN 特征上可以通过重要性和可视觉化来展示概念解释。 Imgtab 直观的精确性定义。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
Top
微信扫码咨询专知VIP会员